ARTIFICIAL INTELLIGENCE AS A CAUSE OF DISCRIMINATION IN INSURANCE LAW
DOI:
https://doi.org/10.63177/isc.2025.07Keywords:
insurance, bias, discrimination, artificial intelligence, liability.Abstract
Using AI in the form of a self-learning algorithm that can solve recurring problems based on available data, may lead to a development of a systemic deviation between the modeling and reality. Given deviation may result in bias in the decision-making process. This paper aims to highlight the phenomenon of AI-caused bias in insurance industry since insurers will rely on AI greatly. Since the bias has the potential to cause discrimination and unequal treatment of policyholders, the authors examine national legislation regarding the prohibition of discrimination in order to determine to what extent these regulations should apply to bias in insurance and what potential sanctions exist for such behavior. Additional issue to this matter is the question of liability for the AI-caused damage which required going beyond the national legislation and searching for the answers in newly adopted European legislation.
References
Arsenijević, B. 2023. Odgovornost za štetu od veštačke inteligencije. In: Petrović, Z. & Čolović, V. & Obradović, D. Prouzrokovanje štete, naknada štete i osiguranje. Beograd, Valjevo: Institut za uporedno pravo, Udruženje za odštetno pravo, Pravosudna akademija, pp. 135–155;
Avramov, D. & Jovanov, I. 2023. Sudijska (ne)pristrasnost i veštačka inteligencija. Strani pravni život, 2, pp. 161–177;
BaFin. 2017. IT-Kompetenz in der Geschäftsleitung, BaFin passt Entscheidungsmaßstäbe für Bestellung von ITSpezialisten zu Geschäftsleitern an. BaFin Journal, 12, pp. 15–18;
Bathaee, Y. 2018. The Artificial Intelligence Black Box and the Failure of Intent and Causation. Harvard Journal of Law and Technology. 31(2), pp. 890–938;
Ćeranić Perišić, J. 2025. Digital transformation: Regulation of Artificial Intelligence in the European Union. In: Kellerhals, A. & Baumgartner, T. & Ademi, F., European Integration in Times of Security Challenges. Zürich: EIZ Publishing, pp. 147–164;
Eubanks, V. 2018. Automating inequality. How high-tech tools profile, police, and punish the poor. New York: St. Martin’s Press;
Glintić, M. 2023. Korišćenje genetskih podataka u pravu osiguranja. In: Rajić Ćalić, J., Uporednopravni izazovi u savremenom pravu – In memoriam dr Stefan Andonović. Beograd, Kragujevac: Institut za uporedno pravo, Pravni fakultet Unverziteta u Kragujevcu, pp. 553–569;
Hastie, T.& Tibshirani, R. & Friedman, J. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Berlin: Springer;
Heinrichs, B. 2022. Discrimination in the age of artificial intelligence. AI and Society, 37(1), pp. 143-154;
Henkel, M. & Heck, T. & Göretz, J. 2018. Rewarding Fitness Tracking—The Communication and Promotion of Health Insurers’ Bonus Programs and the Use of Self-Tracking Data. In: Meiselwitz. G., Social Computing and Social Media. Technologies and Analytics. Berlin: Springer. pp. 28–49;
High-Level Expert Group on Artificial Intelligence, 2019. A Definition of Artificial Intelligence: Main Capabilities and Scientific Disciplines;
Karanikić Mirić, M. 2019. Objektivna odgovornost za štetu. Beograd: Službeni glasnik, Beograd;
Karner, E. & Koch, B. & Geistfeld, M. 2021. Comparative Law Study on Civil Liability for Artificial Intelligence. Luxembourg: European Commission, Publications Office of European Union;
Knežević Bojović, A. et al. 2013. Zabrana diskriminacije: odabrane presude Evropskog suda za ljudska prava i Evropskog suda pravde. Beograd: Udruženje javnih tužilaca i zamenika javnih tužilaca Srbije;
Kolleck A. & Orwat C. 2020. Mögliche Diskriminierung durch algorithmische Entscheidungssysteme und maschinelles Lernen – ein Überblick. Berlin: Büro für Technikfolgen - Abschätzung beim Deutschen Bundestag;
Kuzminac, M. 2024. Razmatranje posredne i prenesene diskriminacije u sferi zapošljavanja i rada iz ugla prava Evropske unije. Strani pravni život, 1, pp. 15–37;
Lattimore, S. et al. 2020. Using Artificial Intelligence to Make Decisions: Addressing the Problem of Algorithmic Bias. Technical Paper. Sydney: Australian Human Rights Commission;
Martini, M. 2019. Blackbox Algorithmus– Grundfragen einer Regulierung Künstlicher Intelligenz. Berlin: Springer;
Martins, D., 2019. Enabling Non-technical Users to Query and Purchase Data. Doctoral Thesis. Münster: University of Münster;
Michie, D. 1991. Methodologies from Machine Learning in Data Analysis and Software. The Computer Journal, 34 (6), pp. 559–565;
Mihajlović, A. & Ćorić, V. 2024. Artificial Intelligence And Discrimination – Strenghts And Weaknesses Of The Current European Anti-Discrimination Legal Framework. In. Reljanović, M., Regional Law Review. Belgrade: Institute of Comparative Law, pp. 9–29;
Neff, G. & Nagy, P. 2016. Talking to Bots: Symbiotic Agency and the Case of Tay. International Journal of Communication. 10, pp. 4915–4931;
Ntoutsi, E. et al., Bias in data-driven artificial intelligence systems—An introductory survey. Wiley Interdisciplinary Reviews. 1–14;
Pasquale, F. 2015. The Black Box Society: The Secret Algorithms That Control Money and Information. Cambridge: Harvard University Press;
Pohlmann, P. et al. 2022. Künstliche Intelligenz, Bias und Versicherungen – Eine technische und rechtliche Analyse. Zeitschrift für die gesamte Versicherungswissenschaft, 11, pp. 135–175;
Petrović Tomić, N. & Glintić, M. 2024. The Hybridization of The Regulatory Framework Of Insurance Contract Law: Elements Of A New Setting. Annals of the Faculty of Law in Belgrade, 72(2), pp. 223–250;
Rejmaniak. R. 2021. Bias in Artificial Intelligence Systems. Bialystok Legal Studies, 26(3), pp. 25–42;
Rodrigues, R. 2020. Legal and Human Rights Issues of AI: Gaps, Challenges and Vulnerabilities. Journal of Responsible Technology. 4, pp. 1–36;
Spindler, G. 2016. Roboter, Automation, künstliche Intelligenz, selbst-steuernde Kfz – Braucht das Recht neue Haftungskategorien? Eine kritische Analyse möglicher Haftungsgrundlagen für autonome Steuerungen. Computer und Recht, 31(12), pp. 766–780;
Spindler, G. 2021. Der Vorschlag der EU-Kommission für eine Verordnung zur Regulierung der Künstlichen Intelligenz (KI-VO-E), Ansatz, Instrumente, Qualität und Kontext. Computer & Recht, 37, pp. 361–374;
van Bekkum, M. & Borgesius, F. Z. & Heskes, T. 2024. AI, insurance, discrimination and unfair differentiation. An overview and research agenda. Law, Innovation and Technology, pp. 1–28;
von Walter, A. 2019. Gedrosselte Intelligenz? Künstliche Intelligenz und der Datenschutz. Kommunikation und Recht, 7-8, pp. 21–24;
Council Directive 2000/43/EC of 29 June 2000 implementing the principle of equal treatment between persons irrespective of racial or ethnic origin, OJ L 180, 19.7.2000;
Constitution of the Republic of Serbia, „Official Gazette of the Republic of Serbia“, No. 98/2006, 115/2021;
Insurance Law, „Official Gazette of the Republic of Serbia“, No. 139/2014, 44/2021;
Law of Contract and Torts, „Official Gazette of the SFRY“, No. 29/78, 39/85, 45/89; Constitutional Court Decision, No. 57/89, „Official Gazette of the FRY“, No. 31/93, „Official Gazette of SCG“, No. 1/2003 – Constitutional Charter, „Official Gazette of the RS“, No. 18/2020;
Law on Prevention and Diagnosis of Genetic Diseases, Genetically Conditioned Anomalies and Rare Diseases, „Official Gazette of the Republic of Serbia“, No. 8/15;
Law on Prohibition of Discrimination, „Official Gazette of the Republic of Serbia“, No. 22/2009, 52/2021;
Law on Personal Data Protection,“Official Gazette of RS“, No. 87/2018;
Strategy for the Development of Artificial Intelligence in the Republic of Serbia for period 2025-2030, available at https://www.media.srbija.gov.rs/medsrp/dokumenti/strategy_artificial_intelligence.pdf.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.